EXECUTIVE SUMMARY Thank you for your continued hard work sampling **Mountainview Lake** this year! Your monitoring group sampled the deep spot **three** times this year and has done so for many years. As you know, conducting multiple sampling events each year enables DES to more accurately detect water quality changes. Keep up the great work! We encourage your monitoring group to continue utilizing the Colby Sawyer College Water Quality Laboratory in New London. This laboratory was established to serve the large number of lakes/ponds in the greater Lake Sunapee region of the state. This laboratory is inspected by DES and operates under a DES approved quality assurance plan. We encourage your monitoring group to utilize this laboratory next summer for all sampling events, except for the annual DES biologist visit. To find out more about the Colby Sawyer College Water Quality Laboratory, and/or to schedule dates to pick up bottles and equipment, please call Bonnie Lewis, laboratory manager, at (603) 526-3486. Since your lake is located in the Lake Sunapee Watershed, we are providing an update detailing the activities of The Sunapee Area Watershed Coalition (SAWC). SAWC was organized in January, 2005, to promote local efforts to protect water quality, raise community awareness of important watershed issues, formulate clear guidelines for responsible, long-term stewardship of water resources, and encourage cooperation among Sunapee watershed towns to manage and protect water resources for the common benefit of the area communities. SAWC is made up of representatives from each watershed town (Goshen, Newbury, New London, Springfield, Sunapee and Sutton), the Lake Sunapee Protective Association, Colby Sawyer College, Upper Valley Lake Sunapee Regional Planning Commission, several lake and pond associations and interested watershed residents. The inter-town Coalition was formed to develop a long-term watershed management plan for the Lake Sunapee watershed. The Sunapee Watershed Management Plan, completed by SAWC in 2008, pointed to stormwater runoff as a priority water quality issue. As we are all aware, New Hampshire has been hit hard in the last several years by more frequent and intense storm activity. The storms have caused extensive damage to infrastructure, including public roads, culverts and bridges. Additionally, these storms and the infrastructure failures have damaged stream channels and banks and degraded water quality. The municipalities in the Sunapee watershed will be benefiting from a National Oceanic and Atmospheric Administration (NOAA) funded research project that will assess the adequacy of stormwater infrastructure throughout the watershed. The two-year study will assess present adequacy, and will include projected development impacts (more impervious surface) and climate change impacts (precipitation levels). Municipalities will be provided with a report detailing this information which will also include an economic analysis estimating cost-savings association with upgrading infrastructure to avoid damages. Also included will be estimates on savings associated with incorporation of Low Impact Development (LID) techniques. The study includes researchers from Antioch University (Keene), the University of New Hampshire, and the Lake Sunapee Protective Association. This study is cohesive with SAWC priorities and the area is fortunate to have this project taking place. For more information, contact June Fichter, Executive Director of the Lake Sunapee Protective Association at 763-2210. # **OBSERVATIONS & RECOMMENDATIONS** ### **DEEP SPOT** #### > Chlorophyll-a Chlorophyll-a, a pigment found in plants, is an indicator of algal or cyanobacteria abundance. Algae are typically microscopic plants that are naturally found in the lake ecosystem. The measurement of chlorophyll-a in the water gives biologists an estimation of the algal concentration or lake productivity. Table 14 in Appendix A lists the current year chlorophyll-a data. Figure 1 depicts the historical and current year chlorophyll-a concentration in the water column. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m^3 . The current year data (the top graph) show that the chlorophyll-a concentration *increased slightly* from **June** to **July**, and then *decreased slightly* from **July** to **August**. The historical data (the bottom graph) show that the **2009** chlorophyll-a mean is *less than* the state and similar lake medians. For more information on the similar lake median, refer to Appendix D. Overall, visual inspection of the historical data trend line (the bottom graph) shows a *decreasing* in-lake chlorophyll-a trend since monitoring began. Specifically the mean chlorophyll concentration has *improved* since **1985**. While algae are naturally present in all waterbodies, an excessive or increasing amount of any type is not welcomed. Phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes and ponds. Algal concentrations increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Increased Chlorophyll-a concentrations can also affect water clarity, causing Secchi-disk transparency to decrease (worsen) and turbidity to increase (worsen). Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters. # Mountainview Lake, Sunapee Figure 1. Monthly and Historical Chlorophyll-a Results #### > Phytoplankton and Cyanobacteria Table 1 lists the phytoplankton (algae) and/or cyanobacteria observed in the pond in **2009**. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed and their relative dominance in the sample. | Division | Genus | % Dominance | |-----------------|---------------|-------------| | Bacillariophyta | Tabellaria | 38.1 | | Chlorophyta | Sphaerocystis | 14.3 | | Cyanophyta | Anabaena | 12.0 | Table 1. Dominant Phytoplankton/Cyanobacteria (August 2009) Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds. A small amount of the cyanobacterium **Anabaena** was observed in the **August** plankton sample. **This cyanobacteria, if present in large amounts, can be toxic to livestock, wildlife, pets, and humans.** Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding cyanobacteria. Cyanobacteria can reach nuisance levels when phosphorus loading from the watershed to surface waters is increased and favorable environmental conditions occur, such as a period of sunny, warm weather. The presence of cyanobacteria serves as a reminder of the pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading to the pond by eliminating fertilizer use on lawns, keeping the pond shoreline natural, re-vegetating cleared areas within the watershed, and properly maintaining septic systems and roads. In addition, residents should also observe the pond in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the pond. If a fall bloom occurs, please collect a sample in any clean jar or bottle and contact the VLAP Coordinator. #### Secchi Disk Transparency Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. Table 14 in Appendix A lists the current year transparency data. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.** Figure 2 depicts the historical and current year transparency **with and without** the use of a viewscope. The current year **non-viewscope** in-lake transparency **increased slightly** from **June** to **July**, and then **decreased slightly** from **July** to **August**. The current year *viewscope* in-lake transparency *increased slightly* from **June** to **July** and then *remained stable* from **July** to **August**. The transparency measured with the viewscope was generally *greater than* the transparency measured without the viewscope this summer. A comparison of the transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event. It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. In the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs. The historical data (the bottom graph) show that the **2009** mean non-viewscope transparency is *approximately equal to* the state median and is *slightly greater than* the similar lake median. Please refer to Appendix D for more information about the similar lake median. Visual inspection of the historical data trend line (the bottom graph) shows a *decreasing* trend, meaning that the transparency has *worsened* since monitoring began in **1985**. Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts should continually be made to stabilize stream banks, pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the pond. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request. We recommend that your group continue to measure the transparency with and without the use of the viewscope on each sampling event. Ultimately, we would like all monitoring groups to use a viewscope to take Secchi disk readings as the use of the viewscope results in less variability in transparency readings between monitors and sampling events. At some point in the future, when we have sufficient data to determine a statistical relationship between transparency readings collected with and without the use of a viewscope, it may only be necessary to collect transparency readings with the use of a viewscope. # Mountainview Lake, Sunapee Figure 2. Monthly and Historical Transparency Results 2009 Transparency Viewscope and Non-Viewscope Results #### > Total Phosphorus Phosphorus is typically the limiting nutrient for vascular plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a pond can lead to increased plant and algal growth over time. Table 14 in Appendix A lists the current year total phosphorus data for in-lake and tributary stations. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. The graphs in Figure 3 depict the historical amount of epilimnetic (upper layer) and hypolimnetic (lower layer) total phosphorus concentrations; the inset graphs depict current year total phosphorus data. The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *decreased* from **June** to **July**, and then *increased* from **July** to **August**. The historical data show that the **2009** mean epilimnetic phosphorus concentration is *slightly less than* the state and similar lake medians. Refer to Appendix D for more information about the similar lake median. The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *decreased* from **June** to **July**, and then *increased* from **July** to **August**. The historical data show that the **2009** mean hypolimnetic phosphorus concentration is *slightly less than* the state and similar lake medians. Please refer to Appendix D for more information about the similar lake median. Overall, visual inspection of the epilimnetic and hypolimnetic historical data trend lines shows a *relatively stable* phosphorus trend since monitoring began. Specifically the mean annual epilimnetic (excluding 2008) and hypolimnetic phosphorus concentrations have *remained approximately the same* since monitoring began in **1985**. One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively affect the ecology and the recreational, economical, and ecological value of lakes and ponds. # Mountainview Lake, Sunapee Figure 3. Monthly and Historical Total Phosphorus Data Epilimnion (Upper Water Layer) #### > pH Table 14 in Appendix A presents the current year pH data for the in-lake stations. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report. The pH at the deep spot this year ranged from **6.66 to 6.94** in the epilimnion and from **6.39 to 6.60** in the hypolimnion, which means that the water is **slightly acidic**. Due to the state's abundance of granite bedrock and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase pond pH. The pH at the deep spot, however, is sufficient to support aquatic life. ### > Acid Neutralizing Capacity (ANC) Table 14 in Appendix A presents the current year epilimnetic ANC for the deep spot. Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.9 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report. The acid neutralizing capacity (ANC) of the epilimnion (upper layer) ranged from **5.7 mg/L to 8.5 mg/L**. This indicates that the lake is **moderately vulnerable** to acidic inputs. ### Conductivity Table 14 in Appendix A presents the current conductivity data for in-lake stations. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The conductivity has *increased* in the lake since monitoring began. In addition, the in-lake conductivity is *much greater than* the state median. Typically, increasing conductivity indicates the influence of pollutant sources associated with human activities. These sources include failed or marginally functioning septic systems, agricultural runoff, and road runoff which contains road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity. We recommend that your monitoring group conduct a shoreline conductivity survey of the lake and tributaries with *elevated* conductivity to help identify the sources of conductivity. To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator. It is possible that de-icing materials applied to Rt. 103 and nearby roadways during the winter months may be influencing the conductivity in the lake. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride). A limited amount of chloride sampling was conducted during **2009**. Please refer to the chloride discussion for more information. Therefore, we recommend that the **epilimnion** (upper layer) be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity. Please note that the DES Limnology Center in Concord is able to conduct chloride analyses, free of charge. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events. ### Dissolved Oxygen and Temperature Table 9 in Appendix A depicts the dissolved oxygen/temperature profile(s) collected during **2009**. The presence of sufficient amounts of dissolved oxygen in the water column is vital to fish and amphibians and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The dissolved oxygen concentration was *lower in the hypolimnion (lower layer) than in the epilimnion (upper layer)* at the deep spot on the **August** sampling event. As stratified lakes age, and as the summer progresses, oxygen typically becomes *depleted* in the hypolimnion by the process of decomposition. Specifically, the reduction of hypolimnetic oxygen is primarily a result of biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake where the water meets the sediment. When the hypolimnetic oxygen concentration is depleted to less than 1 mg/L, the phosphorus that is normally bound up in the sediment may be re-released into the water column, a process referred to as *internal phosphorus loading*. The *lower* hypolimnetic oxygen level is a sign of the lake's *aging* health. This year the DES biologist collected the dissolved oxygen profile in **August**. We recommend that the annual biologist visit for the **2010** sampling year be scheduled during **July** so that we can determine if oxygen is depleted in the hypolimnion *earlier* in the sampling year. #### > Turbidity Table 14 in Appendix A presents the current year data for in-lake turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. The deep spot turbidity was **relatively low** this year, which is good news. However, we recommend that your group sample the pond and any surface water runoff areas during significant rain events to determine if stormwater runoff contributes turbidity and phosphorus to the lake. For a detailed explanation on how to conduct rain event sampling, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator. #### TRIBUTARY SAMPLING #### > Total Phosphorus Table 14 in Appendix A presents the current year total phosphorus data for tributary stations. Please refer to the "Chemical Monitoring Parameters" section of the report for a detailed explanation of total phosphorus. The phosphorus concentration in the **North Bk** sample on the **August** sampling event was *elevated* (150 ug/L), however, the turbidity was *not elevated* (0.97 NTUs). The phosphorus concentration in the **North Bk** samples on the **June and July** sampling events was **elevated** (53 and 83 ug/L), and the turbidity was also **elevated** (4.5 and 2.05NTUs). It had rained during the 24-72 hours prior to the **June and July** sampling events. Rain events typically carry phosphorus laden watershed runoff to tributaries. Phosphorus sources in the watershed can include agricultural runoff, failing or marginal septic systems, stormwater runoff, road runoff, and watershed development. We recommend conducting a stream survey and additional rain event sampling along North Brook to identify potential phosphorus sources in the subwatershed. The phosphorus concentration in the Hamel Bk at 103 samples on the June, July and August sampling events was elevated (36, 34 and 33 ug/L), however, the turbidity was only slightly elevated (2.27, 2.31 and 1.99 NTUs). The phosphorus concentration in the **Hamel Bk** samples on the **June, July** and **August** sampling events was *elevated* (28, 21 and 35 ug/L), and the turbidity was also *elevated* (5.12, 3.36 and 8.60 NTUs). It is interesting to note that phosphorus concentrations decreased downstream in Hamel Bk, however turbidity levels increased. This suggests there may be areas of erosion occurring between the Hamel Bk at 103 and Hamel Bk stations. The phosphorus concentration in the **Culvert at 111 Hamel Rd** sampled on the **August** sampling event was **elevated** (326 ug/L), and the turbidity was also **elevated** (10.1 NTUs). Elevated turbidity levels are most often a result of sediment and/or organic material present in the sample. These materials typically contain attached phosphorus and when present in elevated amounts contribute to elevated tributary phosphorus levels. #### ≽ pH Table 14 in Appendix A presents the current year pH data for the tributary stations. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation of pH. The pH of the tributary stations ranged from **5.84 to 7.14** (> 6) and is sufficient to support aquatic life. #### > Conductivity Table 14 in Appendix A presents the current conductivity data for the tributary stations. Please refer to the "Chemical Monitoring Parameters" section of the report for a more detailed explanation of conductivity. The **Hamel Bk at 103 and Hamel Bk** stations experienced elevated conductivity levels this season, and have experienced elevated or fluctuating conductivity since monitoring began. We recommend that your monitoring group conduct a conductivity survey of tributaries with *elevated* conductivity and along the shoreline of the pond to help identify the sources of conductivity. As previously mentioned increasing conductivity typically indicates the influence of pollutant sources associated with human activities. For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator. It is likely that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the tributaries. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride). A limited amount of chloride sampling was conducted in 2009. Therefore, we recommend that the **tributaries** continue to be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity. Please note that the DES Limnology Center in Concord is able to conduct chloride analyses, free of charge. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events. #### > Turbidity Table 14 in Appendix A presents the current year turbidity data for the tributary stations. Please refer to the "Other Monitoring Parameters" section of the report for a more detailed explanation of turbidity. The Hamel Bk at 103, Hamel Bk and North Brook experienced turbid conditions in June and July, likely the result of stormwater runoff from significant rain events prior to sampling. Rainfall creates runoff that washes sediment and organic materials into tributaries causing turbid water conditions. Eventually, the suspended solids settle out once the flow is reduced or the tributary flow enters the lake. The **Hamel Bk at 103, Hamel Bk and Culvert at 111 Hamel Rd** experienced turbid conditions in **August** likely the result of low flow conditions. These conditions can lead bottom sediment contamination during sample collection. Please be careful to observe tributary flow conditions and only sample when sufficient flow is present. #### > Bacteria (E. coli) Table 14 in Appendix A lists the current year data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present. Please refer to the "Other Monitoring Parameters" section of the report for a more detailed explanation. The Culvert at 111 Hamel Rd was sampled frequently during the summer months to identify potential sources of elevated *E. coli* experienced in 2008. The *E. coli* concentrations were *very low* on the **4/19/2009**, **5/17/2009** and **6/22/2009** sampling events (**0**, **20** and **32**). The *E. coli* concentrations were slightly elevated on the **6/15/2009** and **8/30/2009** sampling events (**154** and **94**); however these concentrations were well below the state standard of 406 counts per 100 mL for surface waters that are not designated public beaches. We suspect that *E. coli* concentrations at this station are caused by natural sources such as wildlife. Also, during rain events, stormwater can transport bacteria from feces to tributaries and periodically cause spikes in *E. coli* concentrations. The *E. coli* concentration was **very low** at the **N Hamel Rd in Lake** station sampled on the **6/28/2009**, **7/20/2009**, **8/17/2009**, and **8/30/2009** sampling events. Specifically, each result was **10 counts or less**, which is *much less than* the state standard of 406 counts per 100 mL for recreational surface waters that are not designated public beaches and 88 counts per 100 mL for surface waters that are designated public beaches. The **North Bk** *E. coli* concentration was **slightly elevated** on the **6/15/2009** sampling event. However, the **112** counts per 100 mL concentration **was not greater than** the state standard of 406 counts per 100 mL for recreational waters that are not designated public beaches. If you are concerned about *E. coli* levels at this station, your monitoring group should conduct rain event sampling and bracket sampling in this area to determine the bacteria sources. For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator. #### > Chlorides Table 14 in Appendix A lists the current year data for chloride sampling. The chloride ion (Cl-) is found naturally in some surface waters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The **epilimnion** was sampled for chloride during the **8/17/2009** sampling event. The result was **26 mg/L**, which is **much less than** the state acute and chronic chloride criteria. However, this concentration is **greater than** what we would normally expect to measure in undisturbed New Hampshire surface waters. The **Hamel Bk at 103 and Hamel Bk** stations were sampled for chloride on the **8/17/2009** sampling event. The results were **52 and 41 mg/L**, which is *much less than* the state acute chloride criteria and *less than* the state chronic chloride criteria. The **North Bk** was sampled for chloride on the **8/17/2009** sampling event. The result was **5.8 mg/L**, which is *much less than* the state acute and chronic chloride criteria. We recommend that your monitoring group continue to conduct chloride sampling in the epilimnion and tributaries, particularly in the spring during snow-melt and rain events during the summer. This will establish a baseline of data that will assist your monitoring group and DES to determine lake quality trends in the future. Please note that chloride analyses can be run free of charge at the DES Limnology Center. Please contact the VLAP Coordinator if you are interested in chloride monitoring. ## DATA QUALITY ASSURANCE AND CONTROL #### **Annual Assessment Audit** During the annual visit to your pond, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled-out an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples volunteer monitors collect are truly representative of actual lake and tributary conditions. Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work! #### Sample Receipt Checklist Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques. Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis. #### **USEFUL RESOURCES** Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/publications/wd/documents/wd-03-42.pdf. Erosion Control for Construction in the Protected Shoreland Buffer Zone, DES fact sheet WD-SP-1, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-1.pdf Iron Bacteria in Surface Water, DES fact sheet WD-BB-18, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/bb/documents/bb-18.pdf. NH Stormwater Management Manual Volume 1: Stormwater and Antidegradation, DES fact sheet WD-08-20A, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/document s/wd-08-20a.pdf NH Stormwater Management Manual Volume 2: Post-Construction Best Management Practices Selection and Design, DES fact sheet WD-08-20B, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/document s/wd-08-20b.pdf NH Stormwater Management Manual Volume 3: Erosion and Sediment Controls During Construction, DES fact sheet WD-08-20C, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/document s/wd-08-20c.pdf Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-4.pdf. Vegetation Maintenance Within the Protected Shoreland, DES fact sheet WD-SP-5, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-5.pdf Watershed Districts and Ordinances, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-16.pdf.